Gamma Irradiation Does Not Induce Detectable Changes in DNA Methylation Directly following Exposure of Human Cells
نویسندگان
چکیده
Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 ((137)Cs) radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA) in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis) or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells.
منابع مشابه
UVB irradiation does not directly induce detectable changes of DNA methylation in human keratinocytes
Unprotected exposure to UVB radiation from the sun and the resulting DNA damage are thought to be responsible for physiological changes in the skin and for a variety of skin cancers, including basal cell and squamous cell carcinoma and malignant melanoma. Although the mutagenic effects of UVB have been well documented and studied mechanistically, there is only limited information as to whether ...
متن کاملEffect of Exposure to 900 MHz GSM Mobile Phone Radiofrequency Radiation on Estrogen Receptor Methylation Status in Colon Cells of Male Sprague Dawley Rats
Background: Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic...
متن کاملA Single Whole-Body Low Dose X-Irradiation Does Not Affect L1, B1 and IAP Repeat Element DNA Methylation Longitudinally
The low dose radioadaptive response has been shown to be protective against high doses of radiation as well as aging-induced genomic instability. We hypothesised that a single whole-body exposure of low dose radiation would induce a radioadaptive response thereby reducing or abrogating aging-related changes in repeat element DNA methylation in mice. Following sham or 10 mGy X-irradiation, seria...
متن کاملAnalysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation
Epigenetic alterations may contribute to the generation of cancer cells in a multi-step process of tumorigenesis following irradiation of normal body cells. Primary human fibroblasts with intact cell cycle checkpoints were used as a model to test whether X-ray irradiation with 2 and 4 Gray induces direct epigenetic effects (within the first cell cycle) in the exposed cells. ELISA-based fluorome...
متن کاملAssessment of Adaptive Response of Gamma Radiation in the Operating Room Personnel Exposed to Anesthetic Gases by Measuring the Relative Gene Expression Changes Ku80, Ligase1 and P53
Background: Some operating room personnel are occupationally exposed to genotoxic agents such as anesthetic gases and ionizing radiation. Adaptive response, as a defense mechanism, will occur when cells become exposed to a low dose of factors harming DNA (priming dose), which in the subsequent exposure to higher dose of those factors (challenging dose), show more resistance and sensibility.. <b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012